Characterisation of Graphs with Exclusive Sum Labelling
نویسندگان
چکیده
A sum graph G is a graph with a mapping of the vertex set of G onto a set of positive integers S in such a way that two vertices of G are adjacent if and only if the sum of their labels is an element of S. In an exclusive sum graph the integers of S that are the sum of two other integers of S form a set of integers that label a collection of isolated vertices associated with the graph G. A graph bears a k-exclusive sum labelling (abbreviated k-ESL), if the set of isolated vertices is of cardinality k. In this paper, observing that the property of having a k-ESL is hereditary, we provide a characterisation of graphs that have a k-exclusive sum labelling, for any k ≥ 1, in terms of describing a universal graph for the property.
منابع مشابه
On the bandwidth of Mobius graphs
Bandwidth labelling is a well known research area in graph theory. We provide a new proof that the bandwidth of Mobius ladder is 4, if it is not a $K_{4}$, and investigate the bandwidth of a wider class of Mobius graphs of even strips.
متن کاملSome Results on Exclusive Sum Labelings of Hypergraphs
We generalize the concept of exclusive sum labelings of graphs (cf. [?]) and determine the exclusive sum number for several classes of hypergraphs. The results disclose a significant difference between graphs (i.e. 2-uniform hypergraphs) and ”genuine” hypergraphs.
متن کاملExclusive Sum Labeling of Graphs: A Survey
All sum graphs are disconnected. In order for a connected graph to bear a sum labeling, the graph is considered in conjunction with a number of isolated vertices, the labels of which complete the sum labeling for the disjoint union. The smallest number of isolated vertices that must be added to a graph H to achieve a sum graph is called the sum number of H; it is denoted by σ(H). A sum labeling...
متن کاملEdge pair sum labeling of some cycle related graphs
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
متن کاملSuper Pair Sum Labeling of Graphs
Let $G$ be a graph with $p$ vertices and $q$ edges. The graph $G$ is said to be a super pair sum labeling if there exists a bijection $f$ from $V(G)cup E(G)$ to ${0, pm 1, pm2, dots, pm (frac{p+q-1}{2})}$ when $p+q$ is odd and from $V(G)cup E(G)$ to ${pm 1, pm 2, dots, pm (frac{p+q}{2})}$ when $p+q$ is even such that $f(uv)=f(u)+f(v).$ A graph that admits a super pair sum labeling is called a {...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 60 شماره
صفحات -
تاریخ انتشار 2017